N-Epsilon-(Carboxymethyl)Lysine And 3-Dg-Imidazolone Are Major Age Structures In Protein Modification By 3-Deoxyglucosone

JOURNAL OF BIOCHEMISTRY(2004)

引用 51|浏览1
暂无评分
摘要
The levels of plasma 3-deoxyglucosone (3-DG) increase under hyperglycemic conditions and are associated with the pathogenesis of diabetic complications because of the high reactivity of 3-DG with proteins to form advanced glycation end products (AGE). To investigate potential markers for 3-DG-mediated protein modification in vitro and in vivo, we compared the yield of several 3-DG-derived AGE structures by immunochemical analysis and HPLC and measured their localization in human atherosclerotic lesions. When BSA was incubated with 3-DG at 37 C for up to 4 wk, the amounts of N-epsilon-(carboxymethyl)lysine (CML) and 3-DG-imidazolone steeply increased with incubation time, whereas the levels of pyrraline and pentosidine increased slightly by day 28. In contrast, significants amount of pyrraline and pentosidine were also observed when BSA was incubated with 3-DG at 60degreesC to enhance AGE-formation. In atherosclerotic lesions, CML and 3-DG-imidazolone were found intracellularly in the cytoplasm of most foam cells and extracellularly in the atheromatous core. A weak-positive immunoreaction with pyrraline was found in the extracellular matrix and a few foam cells in aortic intima with atherosclerotic lesions. Our results provide the first evidence that CML and 3-DG-imidazolone are major AGE structures in 3-DG-modified proteins, and that 3-DG-imidazolone provides a better marker for protein modification by 3-DG than pyrraline.
更多
查看译文
关键词
3-deoxyglucosone (3-DG), 3-DG-imidazolone, N-epsilon-(carboxymethyl)lysine (CML), pyrraline, advanced glycation end products (AGEs)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要