Blocking of tumor necrosis factor activity promotes natural repair of osteochondral defects in rabbit knee.

Acta orthopaedica(2009)

引用 13|浏览11
暂无评分
摘要
Osteochondral defects have a limited capacity for repair. We therefore investigated the effects of tumor necrosis factor (TNF) signal blockade by etanercept (human recombinant soluble TNF receptor) on the repair of osteochondral defects in rabbit knees.Osteochondral defects (5 mm in diameter) were created in the femoral patellar groove in rabbits. Soon after the procedure, a first subcutaneous injection of etanercept was performed. This single injection or, alternatively, 4 injections in total (twice a week for 2 weeks) were given. Each of these 2 groups was divided further into 3 subgroups: a low-dose group (0.05 microg/kg), an intermediate-dose group (0.4 microg/kg), and a high-dose group (1.6 microg /kg) with 19 rabbits in each. As a control, 19 rabbits were injected with water alone. The rabbits in each subgroup were killed 4 weeks (6 rabbits), 8 weeks (6 rabbits), or 24 weeks (7 rabbits) after surgery and repair was assessed histologically.Histological examination revealed that the natural process of repair of the osteochondral defects was promoted by 4 subcutaneous injections of intermediate-dose etanercept and by 1 or 4 injections of high-dose etanercept at the various time points examined postoperatively (4, 8, and 24 weeks). Western blot showed that rabbit TNFalpha had a high affinity for etanercept.Blocking of TNF by etanercept enabled repair of osteochondral defects in rabbit knee. Anti-TNF therapy could be a strategy for the use of tissue engineering for bone and cartilage repair.
更多
查看译文
关键词
tumor necrosis factor,tumor necrosis factor alpha
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要