Dichotomy Between Orbital And Magnetic Nematic Instabilities In Bafe2s3

PHYSICAL REVIEW RESEARCH(2020)

引用 5|浏览25
暂无评分
摘要
Nematic orders emerge nearly universally in iron-based superconductors, but elucidating their origins is challenging because of intimate couplings between orbital and magnetic fluctuations. The iron-based ladder material BaFe2S3, which superconducts under pressure, exhibits antiferromagnetic order below T-N similar to 117 K and a weak resistivity anomaly at T * similar to 180 K, whose nature remains elusive. Here we report angle-resolved magnetoresistance (MR) and elastoresistance (ER) measurements in BaFe2S3, which reveal distinct changes at T *. We find that MR anisotropy and ER nematic response are both suppressed near T *, implying that an orbital order promoting isotropic electronic states is stabilized at T *. Such an isotropic state below T * competes with the antiferromagnetic order, which is evidenced by the nonmonotonic temperature dependence of nematic fluctuations. In contrast to the cooperative nematic orders in spin and orbital channels in iron pnictides, the present competing orders can provide an alternative platform to identify the separate roles of orbital and magnetic fluctuations.
更多
查看译文
关键词
magnetic nematic instabilities,bafe2s3,orbital
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要