Predictive-Descriptive Models For Gas And Solute Diffusion Coefficients In Variably Saturated Porous Media Coupled To Pore-Size Distribution: I. Gas Dlifusivity In Repacked Soil

P Moldrup, T Olesen,S Yoshikawa, T Komatsu,De Rolston

SOIL SCIENCE(2005)

引用 40|浏览8
暂无评分
摘要
The soil gas and solute diffusion coefficients and their dependency on soil total porosity (Phi), fluid-phase (air or water) contents, and pore-size distribution largely control chemical release, transport, and fate in soil. The diffusion coefficients hereby play a key role in both local and global environmental issues including spreading, biodegradation and volatilization of hazardous chemicals at polluted soil sites, and soil uptake, production, and emission of greenhouse gases. In a series of papers, we present new advances in describing and predicting the gas and solute diffusion coefficients in variably saturated porous media, carefully distinguishing between repacked and undisturbed media. Also, we establish direct links between gas and solute diffusivity and pore-size distribution, with further links to pore continuity and tortuosity. In this first paper, a porosity correction term is added to a recently presented model for predicting gas diffusivity in repacked soil. The obtained POrosity-Enhanced (POE) model assumes that increased Phi creates additional interconnectivity between air-filled pores. The POE model is tested against data for 18 repacked soils ranging from 0 to 54% clay, including new data measured in this study for both noncompacted and, compacted, high-porosity soils. The POE model accurately predicts gas diffusivity across a wide Phi range up to 0.75 m(3) m(-3), whereas the original model is accurate only for Phi up to 0.55 m(3) m(-3). A unifying, two-parameter function for gaseous phase pore continuity (f(g)) is suggested. The fg function illustrates developments in gas diffusivity models during the last century, including assumptions behind the increasingly precise prediction models for repacked soil. Last, the POE model is coupled with the widely used van Genuchten (vG) soil-water characteristic model, hereby establishing an accurate and predictive link between soil gas diffusivity and pore-size distribution. The closed-form POE-vG gas diffusivity model is highly useful to evaluate effects of pore-size distribution and soil type on gas diffusivity and gas transport in repacked soil systems.
更多
查看译文
关键词
gas diffusion,POE gas diffusivity model,van Genuchten water retention model,pore-size distribution,pore continuity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要