Measurement of the absolute Raman cross section of the optical phonon in silicon

Solid State Communications(2011)

引用 29|浏览10
暂无评分
摘要
The absolute Raman cross section σRS of the first-order 519 cm−1 optical phonon in silicon was measured using a small temperature-controlled blackbody for the signal calibration of the Raman system. Measurements were made with a 25-mil thick (001) silicon sample located in the focal plane of a 20-mm effective focal length (EFL) lens using 785-, 1064-, and 1535-nm CW pump lasers for the excitation of Raman scattering. The pump beam was polarized along the [100] axis of the silicon sample. Values of 1.0±0.2×10−27, 3.6±0.7×10−28, and 1.1±0.2×10−29 cm2 were determined for σRS for 785-, 1064-, and 1535-nm excitation, respectively. The corresponding values of the Raman scattering efficiency S are 4.0±0.8×10−6, 1.4±0.3×10−6, and 4.4±0.8×10−8 cm−1 sr−1.The values of the Raman polarizability |d| for 785-, 1064-, and 1535-nm excitation are 4.4±0.4×10−15, 5.1±0.5×10−15, and 1.9±0.2×10−15 cm2, respectively. The values of 4.4±0.4×10−15 and 5.1±0.5×10−15 cm2 for |d| for 785- and 1064-nm excitation, respectively, are 1.3 and 2.0 times larger than the values of 3.5×10−15 and 2.5×10−15 cm2 calculated by Wendel. The Raman polarizability |d| computed using the density functional theory in the long-wavelength limit is consistent with the general trend of the measured data and Wendel’s model.
更多
查看译文
关键词
A. Semiconductors,B. Phonons,C. Inelastic light scattering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要