Ab Initio Coupled-Cluster And Configuration Interaction Calculations For O-16 Using The V-Ucom Interaction

PHYSICAL REVIEW C(2009)

引用 14|浏览7
暂无评分
摘要
Using the ground-state energy of O-16 obtained with the realistic V-UCOM interaction as a test case, we present a comprehensive comparison of different configuration interaction (CI) and coupled-cluster (CC) methods, analyzing the intrinsic advantages and limitations of each of the approaches. In particular, we use the importance-truncated (IT) CI and no-core shell model (NCSM) schemes with up to 4-particle-4-hole (4p4h) excitations, with and without the Davidson extensivity corrections, as well as the size extensive CC methods with a complete treatment of one- and two-body clusters (CCSD) and a noniterative treatment of connected three-body clusters via the completely renormalized correction to the CCSD energy defining the CR-CC(2,3) approach, which are all capable of handling larger systems with dozens of explicitly correlated fermions. We discuss the impact of the center-of-mass contaminations, the choice of the single-particle basis, and size-extensivity on the resulting energies. When the IT-CI and IT-NCSM methods include the 4p4h excitations and when the CC calculations include the 1p1h, 2p2h, and 3p3h clusters, as in the CR-CC(2,3) approach, we observe an excellent agreement among the different methodologies, particularly when the Davidson extensivity corrections are added to the IT-CI energies and the effects of the connected three-body clusters are accounted for in the CC calculations. This shows that despite their individual limitations, the IT-CI, IT-NCSM, and CC methods can provide precise and consistent ab initio nuclear structure predictions. Furthermore, the IT-CI, IT-NCSM, and CC ground-state energy values obtained for O-16 are in reasonable agreement with the experimental value, providing further evidence that the V-UCOM two-body interaction may allow for a good description of binding energies for heavier nuclei and that all of the methods used in this study account for most of the relevant particle correlation effects.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要