Chrome Extension
WeChat Mini Program
Use on ChatGLM

Differential effects of novel protamine variants on myocyte contractile function with left ventricular failure

SURGERY(1997)

Cited 5|Views9
No score
Abstract
Background. Protamine administration can cause left ventricular (LV) dysfunction, which may have clinical significance in the setting of congestive heart failure (CHF). Protamine variants have recently been constructed with heparin reversal capacity similar to protamine. The purpose of this study was to examine the potential differential effects of these protamine variants on isolated myocyte contractile function in normal myocytes and in myocytes after the development of CHF. Methods. Contractile function was measured by means of computer-aided videomicroscopy in myocytes from five normal pigs and five pigs with CHF induced by rapid pacing (240 beats/min for 3 weeks). Myocyte contractility was examined in the presence of 40 mu g/ml native protamine or one of three protamine variants: (I) reduced charge (+18) and lysine substituted for arginine; (2) lysine-substituted variant with glutamic acid substituted for the initial proline; or (3) arginine-rich peptide with a terminal arginine-glycine-aspartic acid (RGD) amino acid sequence. Results. In the presence of native protamine, myocyte percent shortening fell from baseline in both the normal (2.86 +/- 0.15 versus 4.58 +/- 0.08, p < 0.05) and the CHF groups (1.01 +/- 0.06 versus 2.07 +/- 0.05, p < 0.05). With both of the lysine-substituted protamine variants, percent shortening fell from baseline in the normal group (3.42 +/- 0.20 for arginine and 3.74 +/- 0.20 for glutamic acid versus 4.58 +/- 0.08, p < 0.05), and was unchanged in the CHF group (1.94 +/- 0.13 versus 2.07 +/- 0.05, P = 0.34 for arginine; and 1.96 +/- 0.10 versus 2.07 +/- 0.05, p = 0.31, for glutamic acid). However, with the arginine/RGD variant, percent shortening fell from baseline in both the normal (2.86 +/- 0.23 versus 4.58 +/- 0.08, p < 0.05) and the CHF groups (1.32 +/- 0.10 versus 2.07 +/- 0.05, p < 0.05). Conclusions. Specific changes in the primary and secondary structures of protamine had different effects on myocyte contractile function. Furthermore, the negative effects of lysine-substituted protamine variants on myocyte contractility were less pronounced in both CHF and normal myocytes. Thus protamine variants may be of clinical use, particularly in the setting of preexisting LV dysfunction.
More
Translated text
Key words
amino acid sequence,secondary structure
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined