Doubly dissociable effects of median- and dorsal-raphé lesions on the performance of the five-choice serial reaction time test of attention in rats.

BEHAVIOURAL BRAIN RESEARCH(1997)

引用 113|浏览9
暂无评分
摘要
Six experiments examined the effects of selective median (MRN)- and dorsal (DRN)-raphe nucleus lesions on the performance of the live-choice serial reaction time task. In this test rats are required to localize brief visual stimuli presented randomly in one of five locations in approximately 30 min sessions of 100 trials. Both accuracy and latency to respond are measured, as well as the incidence of premature and perseverative responding. Selective 5-HT lesions were induced by intra-raphe infusions of 5,7-dihydroxytryptamine following pretreatment with both a noradrenergic and a dopaminergic re-uptake inhibitor. Analysis of tissue monoamine content demonstrated that the MRN lesion profoundly depleted hippocampal 5-HT (by about 90%) without affecting noradrenaline and dopamine, whereas the DRN lesion primarily depleted (by about 80%) nucleus accumbens and caudate-putamen 5-HT. Rats with 5-HT lesions of the MRN performed the task with a similar degree of accuracy to that exhibited by sham-operated controls. Although the MRN lesion did not affect the latency to respond correctly to the visual targets the lesioned animals collected the food reward significantly faster than the controls. A transient increase in the number of premature responses also resulted from this lesion. In contrast the DRN lesion produced a transient but significant increase in the accuracy of performance, and increased both the speed and the probability of responding. The similarity of the effects following global forebrain 5-HT depletion and the selective DRN lesion suggests that the 5-HT projections of the DRN rather than the MRN may play an important role in impulsive behaviour following 5-HT depletion. (C) 1997 Elsevier Science B.V.
更多
查看译文
关键词
serotonin,Raphe nucleus,impulsivity,attention,striatum,hippocampus
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要