MEASUREMENTS OF THE RELATIVE ABUNDANCES OF HIGH-ENERGY COSMIC-RAY NUCLEI IN THE TeV/NUCLEON REGION

ASTROPHYSICAL JOURNAL(2010)

引用 49|浏览27
暂无评分
摘要
We present measurements of the relative abundances of cosmic-ray nuclei in the energy range of 500-3980 GeV/nucleon from the second flight of the Cosmic Ray Energetics And Mass balloon-borne experiment. Particle energy was determined using a sampling tungsten/scintillating-fiber calorimeter, while particle charge was identified precisely with a dual-layer silicon charge detector installed for this flight. The resulting element ratios C/O, N/O, Ne/O, Mg/O, Si/O, and Fe/O at the top of atmosphere are 0.919 +/- 0.123(stat) +/- 0.030(syst), 0.076 +/- 0.019(stat) +/- 0.013(syst), 0.115 +/- 0.031(stat) +/- 0.004(syst), 0.153 +/- 0.039(stat) +/- 0.005(syst), 0.180 +/- 0.045(stat) +/- 0.006(syst), and 0.139 +/- 0.043(stat) +/- 0.005(syst), respectively, which agree with measurements at lower energies. The source abundance of N/O is found to be 0.054 +/- 0.013(stat) +/- 0.009(-0.017)(syst+0.010esc). The cosmic-ray source abundances are compared to local Galactic (LG) abundances as a function of first ionization potential and as a function of condensation temperature. At high energies the trend that the cosmic-ray source abundances at large ionization potential or low condensation temperature are suppressed compared to their LG abundances continues. Therefore, the injection mechanism must be the same at TeV/nucleon energies as at the lower energies measured by HEAO-3, CRN, and TRACER. Furthermore, the cosmic-ray source abundances are compared to a mixture of 80% solar system abundances and 20% massive stellar outflow (MSO) as a function of atomic mass. The good agreement with TIGER measurements at lower energies confirms the existence of a substantial fraction of MSO material required in the similar to TeV per nucleon region.
更多
查看译文
关键词
acceleration of particles,balloons,diffusion,Galaxy: abundances
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要