General Impossibility of Group Homomorphic Encryption in the Quantum World

Proceedings of the 17th International Conference on Public-Key Cryptography --- PKC 2014 - Volume 8383(2014)

引用 11|浏览28
暂无评分
摘要
Group homomorphic encryption represents one of the most important building blocks in modern cryptography. It forms the basis of widely-used, more sophisticated primitives, such as CCA2-secure encryption or secure multiparty computation. Unfortunately, recent advances in quantum computation show that many of the existing schemes completely break down once quantum computers reach maturity (mainly due to Shor's algorithm). This leads to the challenge of constructing quantum-resistant group homomorphic cryptosystems. In this work, we prove the general impossibility of (abelian) group homomorphic encryption in the presence of quantum adversaries, when assuming the IND-CPA security notion as the minimal security requirement. To this end, we prove a new result on the probability of sampling generating sets of finite (sub-)groups if sampling is done with respect to an arbitrary, unknown distribution. Finally, we provide a sufficient condition on homomorphic encryption schemes for our quantum attack to work and discuss its satisfiability in non-group homomorphic cases. The impact of our results on recent fully homomorphic encryption schemes poses itself as an open question.
更多
查看译文
关键词
Public-Key Cryptography,Homomorphic Encryption,Semantic Security,Quantum Algorithms,Sampling Group Generators
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要