The genomic architecture of disease resistance in lettuce

Theoretical and Applied Genetics(2009)

引用 63|浏览11
暂无评分
摘要
Genbank and The Compositae Genome Project database, containing over 42,000 lettuce unigenes from Lactuca sativa cv. Salinas and L. serriola accession UC96US23 were mined to identify 702 candidate genes involved in pathogen recognition ( RGC s), resistance signal transduction, defense responses, and disease susceptibility. In addition, to identify sequences representing additional sub-families of nucleotide binding site (NBS)-leucine-rich repeat encoding genes; the major classes of resistance genes ( R- genes), NBS-encoding sequences were amplified by PCR using degenerate oligonucleotides designed to NBS sub-families specific to the subclass Asteridae, which includes the Compositae family. These products were cloned and sequenced resulting in 18 novel NBS sequences from cv. Salinas and 15 novel NBS sequences from UC96US23. Using a variety of marker technologies, 294 of the 735 candidate disease resistance genes were mapped in our primary mapping population, which consisted of 119 F 7 recombinant inbred lines derived from an interspecific cross between cv. Salinas and UC96US23. Using markers shared across multiple genetic maps, 36 resistance phenotypic loci, including two new loci for resistance to downy mildew and two quantitative trait loci for resistance to anthracnose were positioned onto the reference map to provide a global view of the genomic architecture of disease resistance in lettuce and to identify candidate genes for resistance phenotypes. The majority but not all of the resistance phenotypes were genetically associated with RGC s.
更多
查看译文
关键词
Downy Mildew,Resistance Phenotype,Nucleotide Binding Site,Downy Mildew Resistance,Recessive Resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要