Approximation algorithm for the temperature-aware scheduling problem

ICCAD(2007)

引用 244|浏览303
暂无评分
摘要
The paper addresses the problem of performance optimization for a set of periodic tasks with discrete voltage/frequency states under thermal constraints. We prove that the problem is NP-hard, and present a pseudo-polynomial optimal algorithm and a fully polynomial time approximation technique (FPTAS) for the problem. The FPTAS technique is able to generate solutions in polynomial time that are guaranteed to be within a designer specified quality bound (QB) (say within 1% of the optimal). We evaluate our techniques by experimentation with multimedia and synthetic benchmarks mapped on the 70nm CMOS technology processor. The experimental results demonstrate our techniques are able to match optimal solutions when QB is set at 5%, can generate solutions that are quite close to optimal (< 5%) even when QB is set at higher values (50%), and executes in few seconds (with QB > 25%) for large task sets with 120 nodes (while the optimal solution takes several hundred seconds). We also analyze the effect of different thermal parameters, such as the initial temperature, the final temperature and the thermal resistance.
更多
查看译文
关键词
periodic tasks,processor scheduling,cmos technology processor,pseudo-polynomial optimal algorithm,thermal resistance,optimal solution,approximation theory,temperature-aware scheduling problem,np-hard problem,final temperature,thermal constraint,polynomial time,different thermal parameter,approximation algorithm,computational complexity,heat flux,fptas technique,initial temperature,large task set,scheduling problem,np hard problem,robustness,variation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要