Optimizing The "One Big Switch" Abstraction In Software-Defined Networks

CONEXT(2013)

引用 374|浏览405
暂无评分
摘要
Software Defined Networks (SONS) support diverse network policies by offering direct, network-wide control over how switches handle traffic. Unfortunately, many controller platforms force applications to grapple simultaneously with end-to-end connectivity constraints, routing policy, switch memory limits, and the hop-by-hop interactions between forwarding rules. We believe solutions to this complex problem should be factored in to three distinct parts: (1) high-level SDN applications should define their end-point connectivity n top of a "one big switch" abstraction; (2) a midSDN infrastructure layer should decide on the hop-by hop and (3) a compiler should synthesize an effective set rules that obey the user-defined policies and adhere to the resource constraints of the underlying hardware. In this paper, we define and implement our proposed architecture, present efficient rule-placement algorithms that distribute forwarding policies across general SDN networks while managing rule space constraints, and show how to support dynamic, incremental update of policies. We evaluate the effectiveness of our algorithms analytically by providing complexity bounds on their running time and rule space, as well as empirically, using both synthetic benchmarks, and real-world firewall and routing policies.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要