Prevalence of and molecular basis for tuberculosis drug resistance in the Republic of Georgia: validation of a QIAplex system for detection of drug resistance-related mutations.

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY(2008)

引用 43|浏览3
暂无评分
摘要
We developed a QIAplex system for the simultaneous detection of 24 Mycobacterium tuberculosis gene mutations responsible for resistance to isoniazid (INH), rifampin (RIF), streptomycin (STM), and ethambutol (EMB) in 196 M. tuberculosis isolates recovered in the Republic of Georgia. In comparison to phenotypic susceptibility tests, the QIAplex showed sensitivity and specificity of 85.4% and 96.1% for INH, 94.4% and 99.4% for RIF, 69.6% and 99.2% for STM, 50.0% and 98.8% for EBM, and 86.7% and 100.0% for multidrug resistance, respectively. The dominant resistance mutations revealed were a mutation in katG resulting in S315T (katG S315T), rpsL K43R, and rpoB S531L. Mutations katG S315G and S315T and rpoB S531L were detected with higher frequencies in pretreated patients than in naive patients (P < 0.05). Simultaneous detection of 24 common drug resistance-related mutations provides a molecular tool for studying and monitoring M. tuberculosis resistance mechanism and epidemiology.
更多
查看译文
关键词
drug resistance,public health,multidrug resistance
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要