Axisymmetrical analytical solution for vertical vibration of end-bearing pile in saturated viscoelastic soil layer

Applied Mathematics and Mechanics-english Edition(2010)

Cited 31|Views4
No score
Abstract
Based on elasticity and the theory of saturated porous media, and regarding the pile and the soil as a single phase elastic and a saturated viscoelastic media, respectively, the dynamical behavior of vertical vibration of an end-bearing pile in a saturated viscoelastic soil layer is investigated in the frequency domain using the Helmholtz decomposition and variable separation method. The axisymmetrical analytical solutions for vertical vibrations of the pile in a saturated viscoelastic soil layer are obtained, and the analytical expression of the dynamical complex stiffness of the pile top is presented. Responses of dynamic stiffness factor and equivalent damping of pile top with respect to the frequency are shown in figures using a numerical method. Effects of the saturated soil parameters, modulus ratio of the pile to soil, slenderness ratio of pile and pile’s Poisson ratio, etc. on the stiffness factor and damping are examined. It is shown that, due to the effect of the transversal deformation of the pile and the radial force of the saturated viscoelastic soil acting on the pile, the dynamic stiffness factor and the damping derived from the axisymmetrical solution are greatly different from those derived from the classical Euler-Bernoulli rod model, especially at some specific excitation frequencies. Therefore, there are limitations on applicability of the Euler-Bernoulli rod model in analyzing vertical vibration of the pile. More accurate analysis should be based on a three-dimensional model.
More
Translated text
Key words
saturated porous medium,pile-soil dynamical interaction,axisymmetrical analytical solution,vertical vibration,parameter study
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined