Excessive Nitrogen Inputs in Intensive Greenhouse Cultivation May Influence Soil Microbial Biomass and Community Composition

COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS(2009)

引用 21|浏览2
暂无评分
摘要
Intensive greenhouse vegetable-production systems commonly utilize excessive fertilizer inputs that are inconsistent with sustainable production and may affect soil quality. Soil samples were collected from 15 commercial greenhouses used for tomato production and from neighboring fields used for wheat cropping to determine the effects of intensive vegetable cultivation on soil microbial biomass and community structure. Soil total nitrogen (N) and organic-matter contents were greater in the intensive greenhouse tomato soils than the open-field wheat soils. Soil microbial carbon (C) contents were greater in the greenhouse soils, and soil microbial biomass N showed a similar trend but with high variation. The two cropping systems were not significantly different. Soil microbial biomass C was significantly correlated with both soil total N and soil organic matter, but the relationships among soil microbial biomass N, soil total N, and organic-matter content were not significant. The Biolog substrate utilization potential of the soil microbial communities showed that greenhouse soils were significantly higher (by 14%) than wheat soils. Principal component (PC) analysis of soil microbial communities showed that the wheat sites were significantly correlated with PC1, whereas the greenhouse soils were variable. The results indicate that changes in soil microbiological properties may be useful indicators for the evaluation of soil degradation in intensive agricultural systems.
更多
查看译文
关键词
Biolog substrate utilization,excessive fertilizer inputs,greenhouse production,soil microbial biomass
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要