Pd-1/Pd-1-Ligand Interaction Contributes To Immunosuppressive Microenvironment Of Hodgkin Lymphoma

BLOOD(2007)

引用 301|浏览9
暂无评分
摘要
Abstract Programmed death-1 (PD-1), a member of the CD28 costimulatory receptor superfamily, inhibits T cell activity by providing a second signal to T cells in conjunction with signaling through the T-cell receptor. PD-1/PD-1 ligand (PD-L) signaling system is indicated to be involved in the functional impairment of T cells such as in chronic viral infection or tumor immune evasion. We hypothesized that this signaling system is also involved in the pathogenesis of Hodgkin lymphoma (HL). We examined expression of B7-H1 and B7-DC, two known PD-Ls, in lymphoid cell lines using RT-PCR and flow cytometry. They were expressed in HL and several T-cell lines, whereas most B-NHL lines lacked their expression. Immunohistochemical staining of HL tissues demonstrated that PD-Ls were also expressed in primary H/RS cells. As gene expression of B7-H1 and B7-DC was increased in Epstein-Barr virus (EBV)-transformed lymphoblastoid B-cell lines, we examined the effect of EBV latent membrane proteins on their gene regulation. By luciferase reporter assay, both LMP1 and LMP2A were shown to enhance promoter activity of B7-H1 and B7-DC genes. This finding implies that in cases of EBV-positive HL, latent membrane proteins may help H/RS cells escape from host immune surveillance by upregulating PD-L gene expression. We next analyzed PD-1 expression of tumor-infiltrating T cells of HL tissue samples by flow cytometry, and found that PD-1+ cells were elevated markedly in these cells. As HL patients are well recognized as having defective cellular immunity, we compared PD-1 expression level in peripheral blood T cells of HL patients with those of healthy volunteers and B-NHL patients. PD-1 was significantly elevated in peripheral T cells of HL patients compared to the other two groups. PD-1+ T cells were highest in patients with active disease, and tended to decline along with treatment. Although regulatory T cells are reported to play a part in the pathogenesis of HL, FOXP3+ T cells were not significantly elevated in peripheral T cells of HL patients, and PD-1+ T cells did not overlap with these regulatory population. To elucidate whether the PD-1/PD-L signaling pathway is functional in the immunosuppressive microenvironment of HL, we finally examined the effect of blockade of this pathway. After culturing bulk HL tumor cells with anti-PD-L blocking antibodies, IFN-γ production was measured by ELISA. Blockade of PD-Ls augmented IFN-γ production of HL-infiltrating T cells. We concluded that anti-tumor activity of HL-infiltrating T cells was inhibited via the PD-1/PD-L pathway, and this inhibition could be successfully relieved by PD-L blockade. Taken together, our observations indicate that “T-cell exhaustion” is essential to the pathogenesis of HL, and tumor-infiltrating T cells around H/RS cells seem to be kept in balance by this inhibitory signaling. Our findings provide a potentially effective and clinically applicable strategy for the immunotherapy of HL.
更多
查看译文
关键词
cell line,signaling pathway
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要