Nanotubes connect CD4+ T cells to airway smooth muscle cells: novel mechanism of T cell survival.

Journal of immunology (Baltimore, Md. : 1950)(2015)

引用 14|浏览13
暂无评分
摘要
Contact between airway smooth muscle (ASM) cells and activated CD4(+) T cells, a key interaction in diseases such as asthma, triggers ASM cell proliferation and enhances T cell survival. We hypothesized that direct contact between ASM and CD4(+) T cells facilitated the transfer of anti-apoptotic proteins via nanotubes, resulting in increased survival of activated CD4(+) T cells. CD4(+) T cells, isolated from PBMCs of healthy subjects, when activated and cocultured with ASM cells for 24 h, formed nanotubes that were visualized by immunofluorescence and atomic force microscopy. Cell-to-cell transfer of the fluorescent dye calcein-AM confirmed cytoplasmic communication via nanotubes. Immunoreactive B cell lymphoma 2 (Bcl-2) and induced myeloid leukemia cell differentiation protein (Mcl-1), two major anti-apoptotic proteins, were present within the nanotubes. Downregulation of Mcl-1 by small interfering RNA in ASM cells significantly increased T cell apoptosis, whereas downregulation of Bcl-2 had no effect. Transfer of GFP-tagged Mcl-1 from ASM cells to CD4(+) T cells via the nanotubes confirmed directionality of transfer. In conclusion, activated T cells communicate with ASM cells via nanotube formation. Direct transfer of Mcl-1 from ASM to CD(+) T cells via nanotubes is involved in T cell survival. This study provides a novel mechanism of survival of CD4(+) T cells that is dependent on interaction with a structural cell.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要