The role of hematite–ilmenite solid solution in the production of magnetic anomalies in ground- and satellite-based data

Tectonophysics(2002)

引用 48|浏览7
暂无评分
摘要
Remanent magnetization (RM) of rocks with hematite–ilmenite solid solution (HISS) minerals, at all crustal levels, may be an important contribution to magnetic anomalies measured by ground and satellite altitude surveys. The possibility that lower thermal gradient relatively deep in the crust can result in exsolution of HISS compositions with strong remanent magnetizations (RM) was studied for two bulk compositions within the HISS system. Samples from granulite-terrane around Wilson Lake, Labrador, Canada contains titanohematite with exsolved ferrian ilmenite lamellae. Other samples from the anorthosite-terrane of Allard Lake, Quebec, Canada contain ferrian ilmenite with exsolved titanohematite lamellae. In both cases, the final exsolved titanohematite has similar Ti content and carries dominant magnetic remanence with REM (=NRM/SIRM, where NRM is the natural remanent magnetization and SIRM is the saturation isothermal remanent magnetization) that is comparable to the Ti-free end member. The RM was acquired prior to exsolution and the ilmeno-hematite-rich rock possesses thermal remanent magnetization (TRM), whereas rocks with hemo-ilmenite possess chemical remanent magnetization (CRM). In both cases, we found fairly large homogeneous grains with low demagnetizing energy that acquired intense RM. The magnetism of the ilmeno-hematite solid solution phases is not significantly perturbed by the continuous reaction: ilmeno-hematite≧titanohematite solid solution. Hence, the occurrence of HISS in rocks that cooled slowly in a low intensity magnetic field will have an intense magnetic signature characterized by a large REM.
更多
查看译文
关键词
Magnetic petrology,Hematite,Ilmenite,REM,TRM,CRM,Magnetic anomalies
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要