PP96 Tumor tissue profiling at the drug targeting level: kinase activity

EJC SUPPLEMENTS(2009)

引用 0|浏览13
暂无评分
摘要
Mitochondrial NADPH-dependent isocitrate dehydrogenase, IDH2, and cytosolic IDH1, catalyze reductive carboxylation of 2-oxoglutarate. Both idh2 and idh1 monoallelic mutations are harbored in grade 2/3 gliomas, secondary glioblastomas and acute myeloid leukemia. Mutant IDH1/IDH2 enzymes were reported to form an oncometabolite r-2-hydroxyglutarate (2HG), further strengthening malignancy. We quantified CO2-dependent reductive carboxylation glutaminolysis (RCG) and CO2-independent 2HG production in HTB-126 and MDA-MB-231 breast carcinoma cells by measuring 13C incorporation from 1-13C-glutamine into citrate, malate, and 2HG. For HTB-126 cells, 13C-citrate, 13C-malate, and 13C-2-hydroxyglutarate were enriched by 2-, 5-, and 15-fold at 5 mM glucose (2-, 2.5-, and 13-fold at 25 mM glucose), respectively, after 6 h. Such enrichment decreased by 6% with IDH1 silencing, but by 30–50% upon IDH2 silencing while cell respiration and ATP levels rose up to 150%. Unlike 2HG production RCG declined at decreasing CO2. At hypoxia (5% O2), IDH2-related and unrelated 13C-accumulation into citrate and malate increased 1.5–2.5-fold with unchanged IDH2 expression; whereas hypoxic 2HG formation did not. 13C–2HG originated by ∼50% from other than IDH2 or IDH1 reactions, substantiating remaining activity in IDH1&2-silenced cells. Relatively high basal 12C–2HG levels existed (5-fold higher vs. non-tumor HTB-125 cells) and 13C–2HG was formed despite the absence of any idh2 and idh1 mutations in HTB-126 cells. Since RCG is enhanced at hypoxia (frequent in solid tumors) and 2HG can be formed without idh1/2 mutations, we suggest 2HG as an analytic marker (in serum, urine, or biopsies) predicting malignancy of breast cancer in all patients.
更多
查看译文
关键词
drug targeting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要