AMR Simulations of Magnetohydrodynamic Problems by the CESE Method in Curvilinear Coordinates

Solar Physics(2010)

引用 77|浏览10
暂无评分
摘要
The objective of this paper is to present new extensions of the space – time conservation element and solution element (CESE) method for simulations of magnetohydrodynamic (MHD) problems in general curvilinear coordinates by using an adaptive mesh refinement (AMR) grid system. By transforming the governing MHD equations from the physical space ( x , y , z ) to the computational space ( ξ , η ,ζ) while retaining the form of conservation, the CESE method is established for MHD in the curvilinear coordinates. Utilizing the parallel AMR package PARAMESH, we present the first implementation of applying the AMR CESE method for MHD (AMR-CESE-MHD) in both Cartesian and curvilinear coordinates. To show the validity and capabilities of the AMR-CESE-MHD code, a suite of numerical tests in two and three dimensions including ideal MHD and resistive MHD are carried out, with two of them in both Cartesian and curvilinear coordinates. Numerical tests show that our results are highly consistent with those obtained previously by other authors, and the results under both coordinate systems confirm each other very well.
更多
查看译文
关键词
Adaptive mesh refinement,CESE method,Curvilinear coordinates,Magnetohydrodynamics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要