The structural mechanism of the inhibition of archaeal RelE toxin by its cognate RelB antitoxin.

Biochemical and Biophysical Research Communications(2010)

引用 7|浏览1
暂无评分
摘要
The archaeal toxin, aRelE, in the hyperthermophilic archaeon Pyrococcus horikoshii OT3 inhibits protein synthesis, whereas its cognate antitoxin, aRelB, neutralizes aRelE activity by forming a non-toxic complex, aRelB-aRelE. The structural mechanism whereby aRelB neutralizes aRelE activity was examined by biochemical and biophysical analyses. Overexpression of aRelB with an aRelE mutant (ΔC6), in which the C-terminal residues critical for aRelE activity were deleted, in Escherichia coli allowed a stable complex, aRelB-ΔC6, to be purified. Isothermal titration of aRelE or ΔC6 with aRelB indicated that the association constant (Ka) of wild-type aRelB-aRelE is similar to that of aRelB-ΔC6, demonstrating that aRelB makes little contact with the C-terminal active site of aRelE. Overexpression of deletion mutants of aRelB with aRelE indicated that either the N-terminal (pos. 1-27) or C-terminal (pos. 50-67) fragment of aRelB is sufficient to counteract the toxicity of aRelE in E. coli cells and the second α-helix (α2) in aRelB plays a critical role in forming a stable complex with aRelE. The present results demonstrate that aRelB, as expected from its X-ray structure, precludes aRelE from entering the ribosome, wrapping around the molecular surface of aRelE.
更多
查看译文
关键词
IPTG,ITC,RNase,RP-HPLC,TA,TCA,TFA
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要