Effect of vitamin A dietary intake on in vitro and in vivo activation of aflatoxin B1

Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis(1992)

引用 32|浏览15
暂无评分
摘要
The mechanism by which vitamin A prevents or delays in chemical carcinogenesis remains unclear. In the present study, we assess the suggestive role of vitamin A in the initiation phase of carcinogenesis. We have conducted a dose-effect relationship between vitamin A dietary intake and aflatoxin B1 (AFB1) genotoxicity measured both in vitro and in vivo. Thus AFB1-induced mutagenesis in Salmonella typhimurium TA98 was investigated and compared to AFB1-induced single-strand breaks (SSBs) in DNA of rat hepatocytes. Rats were fed ad libitum with diet containing 0, 5, 50 or 500 IU of retinyl palmitate for 8 weeks. The AFB1-treated rats were injected i.p. with 1 mg/kg body weight. In the Ames test conditions TA98 back-reversion was negatively correlated with the log of vitamin A concentration in liver S9 fractions from experimental groups. However, the activities of metabolizing enzymes which specifically activate or deactivate AFB1 were found to be significantly decreased in vitamin A-deficient animals and weakly modified in vitamin A-supplemented animals. For in vivo experiments, the DNA elution rate of both AFB1-treated and untreated rats was increased in vitamin A deficiency condition (+79% and +17% respectively) and was reduced with the higher vitamin A dietary level (−44% and −53% respectively). DNA damage measured in vivo showed a significant positive correlation with mutagenic activity measured in the Ames test. These results confirm that the vitamin A status of animals can influence AFB1 genotoxic activity in vitro and indicate that this phenomenon also occurs in vivo. Thus a similar mechanism may be considered for the protective action of vitamin A both in vitro and in vivo.
更多
查看译文
关键词
Vitamin A,Carcinogenesis,Aflatoxin B1,DNA strand breaks,Metabolic activation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要