Evoked epileptiform discharges in the rat anterior piriform cortex: generation and local propagation.

BRAIN RESEARCH(2000)

Cited 26|Views1
No score
Abstract
The purpose of this study was to identify cellular and synaptic properties of neurons in a small region within the anterior piriform cortex (aPC), termed the area tempestas (AT), responsible for triggering forebrain seizures in rats. Using a brain slice preparation, we performed whole-cell patch recordings from neurons in the regions overlapping the functionally defined AT. Local electrical stimulation activated synaptic inputs to neurons in these regions, collectively termed the deep aPC (daPC). Synaptic inputs were blocked by selective ionotropic glutamate receptor antagonists. Excitatory bursts were evoked from 59% of daPC neurons as the stimulus intensity was raised above a precise threshold. Secondary bursts (6-15 Hz) occurred in 34% of daPC neurons. Evoked bursts were synaptically driven, as they were blocked by TTX (1 mu M) or 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo( f)quinoxaline (NBQX, 1 mu M), but not by inclusion of cesium and N-(2,6-dimethylphenylcarbamoylmethyl) triethylammonium (QX-314) in the internal patch solution. Neither augmentation of excitatory nor suppression of inhibitory transmission were required to evoke bursts from daPC neurons. However, bicuculline (20 mu M) lowered the threshold intensity for evoking discharges and increased the incidence and duration of evoked bursts, indicating active inhibitory control of daPC neurons. Stimulation in the daPC evoked epileptiform field potentials from layer II of the adjacent PC and bursts from layer II pyramidal neurons. This work demonstrates that synaptically dependent excitatory burst discharges can be evoked from daPC neurons without altering the balance between synaptic excitation and inhibition. Stimuli that trigger bursts in daPC neurons also generate epileptiform activity in layer II pyramidal cells, indicating that propagation of excitatory activity triggered from the daPC to the pyramidal neurons of the aPC can contribute to the initiation of seizures induced by disinhibition of the AT in vivo. (C) 2000 Elsevier Science B.V. All rights reserved.
More
Translated text
Key words
epilepsy,area tempestas,seizure
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined