(Ba, Sr)TiO 3 thin films grown by pulsed laser deposition with low dielectric loss at microwave frequencies

Applied Physics A(2004)

引用 16|浏览7
暂无评分
摘要
We report a method for producing BST films with consistently high figures of merit for tunable microwave applications. (Ba 1-x ,Sr x )TiO 3 (x=0.4, target doped with 1% W) thin films have been deposited using pulsed laser deposition onto (100)MgO substrates. Films were deposited at low partial pressures of oxygen (50 mTorr) at a substrate temperature of 730 °C. An analysis of the X-ray diffraction data indicates that the film has a nearly cubic structure, with the overall lattice parameter enlarged relative to the bulk material due to the presence of oxygen vacancies. A post-deposition anneal of the film in flowing oxygen (1000 °C for 6 h) resulted in a decrease in the lattice parameter while remaining nearly cubic. An analysis of the microwave dielectric properties (1–20 GHz) showed that the annealed film exhibited about 10% tunability for an applied bias field of 67 kV/cm with a dielectric Q(1/tanδ)>600. Investigation of the films by time-resolved confocal scanning optical microscopy (CSOM) has revealed that there is an out-of-plane polarization at zero applied field (E DC =0). The results show that the paraelectric response is relatively insensitive to applied field, while the ferroelectric response is correlated with the growth of in-plane nanodomains. We find these results to be consistent with a large number of studies that show that strain-relief is of paramount importance if ferroelectric films are to be developed as microwave circuit components.
更多
查看译文
关键词
Microwave,Pulse Laser Deposition,Microwave Dielectric Property,Applied Bias,Bias Field
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要