Constitutively active heat shock factor 1 enhances glucose-driven insulin secretion.

Metabolism(2011)

引用 7|浏览10
暂无评分
摘要
Weak pancreatic β-cell function is a cause of type 2 diabetes mellitus. Glucokinase regulates insulin secretion via phosphorylation of glucose. The present study focused on a system for the self-protection of pancreatic cell by expressing heat shock factor (HSF) and heat shock protein (HSP) to improve insulin secretion without inducing hypoglycemia. We previously generated a constitutively active form of human HSF1 (CA-hHSF1). An adenovirus expressing CA-hHSF1 using the cytomegalovirus promoter was generated to infect mouse insulinoma cells (MIN6 cells). An adenovirus expressing CA-hHSF1 using a human insulin promoter (Ins-CA-hHSF1) was also generated to infect rats. We investigated whether CA-hHSF1 induces insulin secretion in MIN6 cells and whether Ins-CA-hHSF1 can improve blood glucose and serum insulin levels in healthy Wister rats and type 2 diabetes mellitus model rats. CA-hHSF1 expression increased insulin secretion 1.27-fold compared with the overexpression of wild-type hHSF1 in MIN6 cells via induction of HSP90 expression and subsequent activation of glucokinase. This mechanism is associated with activation of both glucokinase and neuronal nitric oxide synthase. Ins-CA-hHSF1 improved blood glucose levels in neonatal streptozotocin-induced diabetic rats. Furthermore, Ins-CA-hHSF1 reduced oral glucose tolerance testing results in healthy Wister rats because of an insulin spike at 15 minutes; however, it did not induce hypoglycemia. CA-hHSF1 induced insulin secretion both in vitro and in vivo. These findings suggest that gene therapy with Ins-CA-hHSF1 will be able to be used to treat patients with type 2 diabetes mellitus and impaired glucose tolerance without causing hypoglycemia at fasting.
更多
查看译文
关键词
heat shock protein,diabetes mellitus,heat shock factor,wild type
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要