Influential mechanism of water occurrence states of waste-activated sludge: Potential linkage between water-holding capacity and molecular compositions of EPS.

Water research(2022)

引用 28|浏览6
暂无评分
摘要
The water occurrence states in waste-activated sludge (WAS) are crucial to its dewaterability and significantly influenced by the water-retaining capacity of extracellular polymeric substances (EPS) matrix. Accordingly, the non-selective •OH-oxidation processes were widely reported for the sludge dewaterability improvement, just because it can non-selectively destruct complex structure units of EPS, no matter these structure units are crucial to EPS water-holding capacity or not. But these non-selective processes may also require the large consumption of oxidant chemicals, which limits their wide application. This study specifically focused on the •OH-induced variation in molecular compositions of EPS and the corresponding effects on water occurrence states of WAS, which is expected to lay a foundation for optimizing the efficiency of oxidation-based sludge conditioning. Especially, through a novel method based on the equilibrium dialysis with alkaline titration, the typical hydrophilic functional groups of EPS were quantitatively analyzed. The results indicated that the free amino group (-NH2) had the greater impact on the water-holding capacity of EPS than the acidic hydroxyl groups (-OH). Nevertheless, by Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS), the hydrophilic heteroatom classes (e.g. N:Cw) were found to be less sensitive to the varying oxidant dosage than the molecular saturation degree (e.g. weighted averages of double bond equivalents (DBEw) and aromatic index (AImod,w)). •OH modified the nitrogen-containing or oxygen-containing functional groups, but could not completely remove these hydrophilic functional groups from EPS macromolecules. Therefore, the potential competition for •OH between the hydrophilic functional groups and the unsaturated structure units of EPS was clarified, which guides directions that developing highly-efficient sludge conditioning approaches should be based on the selective removal of hydrophilic functional groups instead of improving •OH production efficiency.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要