Single polymer adsorption in shear: flattening versus hydrodynamic lift and corrugation effects

EPL(2010)

引用 17|浏览13
暂无评分
摘要
The adsorption of a single polymer to a flat surface in shear is investigated using Brownian hydrodynamics simulations and scaling arguments. Competing effects are disentangled: in the absence of hydrodynamic interactions, shear drag flattens the chain and thus enhances adsorption. Hydrodynamic lift on the other hand gives rise to long-ranged repulsion from the surface which preempts the surface-adsorbed state via a discontinuous desorption transition, in agreement with theoretical arguments. Chain flattening is dominated by hydrodynamic lift, so overall, shear flow weakens the adsorption of flexible polymers. Surface friction due to small-wavelength surface potential corrugations is argued to weaken the surface attraction as well. Copyright (C) EPLA, 2010
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要