{alpha}-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics.

MOLECULAR BIOLOGY OF THE CELL(2009)

引用 94|浏览10
暂无评分
摘要
The function of alpha-synuclein, a soluble protein abundant in the brain and concentrated at presynaptic terminals, is still undefined. Yet, alpha-synuclein overexpression and the expression of its A30P mutant are associated with familial Parkinson's disease. Working in cell-free conditions, in two cell lines as well as in primary neurons we demonstrate that alpha-synuclein and its A30P mutant have different effects on actin polymerization. Wild-type alpha-synuclein binds actin, slows down its polymerization and accelerates its depolymerization, probably by monomer sequestration; A30P mutant alpha-synuclein increases the rate of actin polymerization and disrupts the cytoskeleton during reassembly of actin filaments. Consequently, in cells expressing mutant alpha-synuclein, cytoskeleton-dependent processes, such as cell migration, are inhibited, while exo- and endocytic traffic is altered. In hippocampal neurons from mice carrying a deletion of the alpha-synuclein gene, electroporation of wild-type alpha-synuclein increases actin instability during remodeling, with growth of lamellipodia-like structures and apparent cell enlargement, whereas A30P alpha-synuclein induces discrete actin-rich foci during cytoskeleton reassembly. In conclusion, alpha-synuclein appears to play a major role in actin cytoskeletal dynamics and various aspects of microfilament function. Actin cytoskeletal disruption induced by the A30P mutant might alter various cellular processes and thereby play a role in the pathogenesis of neurodegeneration.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要