Hardware support for enforcing isolation in lock-based parallel programs.

ICS'12: International Conference on Supercomputing San Servolo Island, Venice Italy June, 2012(2012)

引用 1|浏览33
暂无评分
摘要
When lock-based parallel programs execute on conventional multi-core hardware, faulty software can cause hard-to-debug race conditions in critical sections that violate the contract between locks and their protected shared variables. This paper proposes new hardware support for enforcing isolation of critical section execution. It can detect and tolerate races, allowing programs to execute race-free. Our hardware scheme targets the existing large code base of locked-based parallel programs written in type unsafe languages such as C and C++. Our approach works directly on unmodified executables. An evaluation of 13 programs from the SPLASH2 and PARSEC suites shows that the cost of the additional hardware and the impact on the overall execution time is minimal for these applications. Our mechanism is complementary to hardware transactional memory in that it uses similar structures but focuses on enhancing the reliability of existing lock-based programs.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要