Production and autocrine/paracrine effects of endogenous insulin-like growth factor-1 in rat cardiac fibroblasts.

Regulatory Peptides(2005)

Cited 32|Views12
No score
Abstract
Insulin-like growth factor (IGF)-1 appears to play an important role in cardiac hypertrophy or remodeling. However, the role of endogenous IGF-1 in the growth of cardiac myocytes and fibroblasts remains unclear. This study investigated the major site of the production of cardiac IGF-1 and the local effects of endogenous IGF-1 secreted from cardiac cells. A significant expression of IGF-1 mRNA was found in cultured neonatal and adult rat cardiac fibroblasts, but not in myocytes. In addition, an in vivo examination by in situ hybridization histochemical analyses demonstrated the IGF-1 transcripts in the interstitial fibrotic tissue of the ventricle. Time-dependent secretion of IGF-1 protein was also observed in cultured cardiac fibroblasts. An antibody against IGF-1 decreased collagen synthesis in cardiac fibroblasts under basal conditions. Fibroblast-conditioned medium, as well as exogenous IGF-1, increased protein synthesis in cardiac myocytes, and this increase was inhibited by antibodies against IGF-1 and IGF-1 receptor, IGF binding protein-3, and IGF-1 receptor antagonist. These observations suggest that IGF-1 is produced and released mainly from cardiac fibroblasts and that endogenous IGF-1 promotes collagen synthesis by cardiac fibroblasts and hypertrophy of myocytes as an autocrine and a paracrine factor. Cardiac IGF-1 may function as an endogenous modulator of cardiac hypertrophy or remodeling.
More
Translated text
Key words
Growth factor,Fibroblast,Myocyte,Hypertrophy,Paracrine
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined