Steep Slope Devices: Enabling New Architectural Paradigms

DAC(2014)

引用 24|浏览58
暂无评分
摘要
The existence of domains where traditional CMOS processors are inefficient has been well-documented in the current literature. In particular, the inefficiency of general purpose CMOS designs operating at very low supply voltages is well-known, and steep sub-threshold slope technologies, such as Tunneling Field Effect Transistors (TFETs), have been demonstrated as a viable alternative for the low-voltage operation domain. However, restricting the design space of steep slope technology-based processors to near-threshold or sub-threshold general purpose processors does the technology a disservice. Steep slope (SS) architectures can simultaneously expand the frontiers of viable computers at both ends of the energy scale: On the one hand, SS architectures enable ultra-low power sensor nodes and wearable technology, while on the other, they are applicable to high powered servers and high performance computing engines. We demonstrate the benefits of adapting this technology in such non-conventional domains, while attempting to address the major challenges encountered. We explore the effect of noise and variations at various levels of abstraction, ranging from the device to the architecture, and examine various techniques to overcome them.
更多
查看译文
关键词
multicore processing,cmos integrated circuits,noise,embedded systems,robustness,automotive,reliability,field effect transistors,low power electronics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要