Characterization of layered anisotropic media from prestack PS-wave-reflection data

GEOPHYSICS(2006)

引用 10|浏览3
暂无评分
摘要
Anisotropy and fracture characterization in individual layers is realized through iterative layer stripping corrections of four, converted-wave (PS-wave) synthetic reflection seismic data sets, generated from azimuthally anisotropic (HTI and TTI) models, and a four component (4-C) data set from the Teal South, Gulf of Mexico. The corrections were applied on a layer-by-layer basis to evaluate the efficacy of constant polarization rotation and time-shift operators. Equivalent isotropic models were compared to anisotropic models after layer-stripping corrections using rms amplitude and shear-wave-splitting time-difference maps to quantify and identify inherent errors in estimating seismic polarization parameters. For HTI media radial and transverse components of PS data that have had layer-stripping corrections applied, exhibit incorrect symmetry and orientations. This may adversely affect inversion and/or amplitude-variation with angle offset (AVO) and amplitude versus azimuth (AVA) analysis. Layer-stripping corrections applied to fast and slow (PS1 and PS2, respectively) components exhibit the correct symmetry and orientation. Time differences between PSI and PS2 are computed using crosscorrelation. Previous studies have addressed some of the problems associated with layer-stripping corrections for the case of vertical fractures (HTI media) and poststack layer-stripping analyses. This study includes an equivalent model with dipping fractures (TTI media) and extends the scope to encompass the effects of anisotropy on prestack data. The results from an application of the same technique are also applied to a limited set of 4-C data from the Teal South project in the Gulf of Mexico. Results are consistent with those of previous studies involving solely poststack 4-C rotation analysis in terms of average, or zero offset, time differences and symmetry orientation. Offset and azimuth amplitude/traveltime variations, however, indicate that there is more information contained in prestack seismic data than 4-C rotation can comprehend.
更多
查看译文
关键词
seismic waves,seismology,fracture
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要