Strong Dzyaloshinskii-Moriya interaction in monolayer CrI3 on metal substrates

PHYSICAL REVIEW B(2022)

引用 6|浏览5
暂无评分
摘要
Dzyaloshinskii-Moriya interaction (DMI) is the primary mechanism for realizing real-space chiral spin textures, which are regarded as key components for the next-generation spintronics. However, DMI arises from a perturbation term of the spin-orbit interaction and is usually weak in pristine magnetic semiconductors. To date, large DMI and the resulting skyrmions are only realized in a few materials under stringent conditions. Using first-principles calculations, we demonstrate that significant DMI occurs between nearest-neighbor Cr atoms in two-dimensional (2D) magnetic semiconductor CrI3 on Au or Cu substrates. This exceptionally strong DMI is generated by the interfacial charge transfer and weak chemical interactions between chromium halides and metal substrates, which break the spatial inversion symmetry. These findings highlight the significance of substrate effects in 2D magnets and expand the inventory of feasible materials with strong DMI.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要