Comparative divertor-transport study for helical devices

NUCLEAR FUSION(2009)

Cited 26|Views24
No score
Abstract
Using the island divertors (IDs) of W7-AS and W7-X and the helical divertor (HD) of LHD as examples, the paper presents a comparative divertor transport study for three typical helical devices of different machine sizes following two distinct divertor concepts, aiming at identifying common physics issues/effects for mutual validation and combined studies. Based on EMC3/EIRENE simulations supported by experimental results, the paper first reviews and compares the essential transport features of the W7-AS ID and the LHD HD in order to build a base and framework for a predictive study of W7-X. The fundamental role of low-order magnetic islands in both divertor concepts is emphasized. Preliminary EMC3/EIRENE simulation results for W7-X are presented and discussed with respect to W7-AS and LHD in order to show how the individual field and divertor topologies affect the divertor transport and performance. For instance, a high recycling regime, which is absent from W7-AS and LHD, is predicted to exist for W7-X. The paper focuses on identifying and understanding the role of divertors for high density plasma operations in helical devices. In this regard, special attention is paid to investigating the divertor function for controlling intrinsic impurities. Impurity transport behaviour and wall-sputtering processes of CX-neutrals are studied under different divertor plasma conditions. A divertor retention effect on intrinsic impurities at high SOL collisonalities is predicted for all the three devices. The required SOL plasma conditions and the underlying mechanisms are analysed in detail. Numerical results are discussed in conjunction with the experimental observations for high density divertor plasmas in W7-AS and LHD. Different SOL transport regimes are numerically identified for the standard divertor configuration of W7-X and the possible consequences on high density plasmas are assessed. All the EMC3-EIRENE simulations presented in this paper are based on vacuum fields and comparisons with local diagnostics are made for low-beta plasmas.
More
Translated text
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined