Highly Efficient Degradation of Tetracycline Hydrochloride in Water by Oxygenation of Carboxymethyl Cellulose-Stabilized FeS Nanofluids

INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH(2022)

引用 3|浏览5
暂无评分
摘要
The transformation of organic pollutants by stabilized nano-FeS in oxic conditions is far less understood than in anoxic states. Herein, carboxymethyl cellulose-stabilized FeS (CMC-FeS) nanofluids are prepared at a CMC-to-FeS mass ratio of 1/2 and their performance of tetracycline hydrochloride (TC) degradation under oxic conditions was investigated. Here, we showed that TC could be efficiently removed by oxygenation of CMC-FeS nanofluids at neutral initial pH. We found that CMC-FeS dosages as low as 15 mg/L can achieve the TC removal efficiency as high as 99.1% at an initial TC concentration of 50 mg/L. Oxidative degradation plays a predominated role in TC removal (accounting for 58.0%), adsorption has the second importance (accounting for 37.0%), and reduction has minor impact (accounting for 4.1%) toward TC removal. Electron spin resonance assays, fluorescent detection using coumarin as a probe, and radical scavenging experiments confirm that hydroxy radicals (center dot OH), both in free and surface-bound forms, contribute to oxidation of TC. Humic acids brought detrimental effects on TC removal and therefore should be biologically degraded in advance. This work offers a facile and cost-effective solution to decontaminate TC in natural and engineered water bodies.
更多
查看译文
关键词
tetracycline hydrochloride,CMC-FeS nanofluid,oxygenation,hydroxy radicals
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要