Efficient Access of Phenyl-Spaced 5,5′-Bridged Dinuclear Ruthenium Metal Complexes and the Effect of Dynamic Ligand Exchange on Catalysis

Martin Lämmle, Steffen Volk, Madelyn Klinkerman, Marius Müßler,Alexander K. Mengele,Sven Rau

Photochem(2022)

Cited 0|Views1
No score
Abstract
Herein, we present the synthesis, characterization, and light-driven hydrogen evolution activity of two dinuclear Ru-Pt complexes, Rup(ph)pPtX2 (X = Cl, I), comprising a new phenyl-spaced 5,5′-bis-phenanthroline p(ph)p bridging ligand. The two complexes only differ in the nature of the halide ligand at the catalytic center. Structural, photophysical, electrochemical, as well as photochemical characterization techniques revealed that the variations of single components of the intramolecular system provide a strong influence on the stability even in non-catalytic conditions. Interestingly, varying electron density at the catalytic center, mainly influenced by the coordinating halide at the catalytic center, as shown by 195Pt NMR spectroscopy, strongly influences the photocatalytic efficiency. Furthermore, intensive investigations on the potential catalytic mechanism showed that small structural variations (e.g., halide exchange) not only affect catalytic activity but can also switch the main catalytic mechanism from an initially molecular one to a fully heterogeneous, colloid-driven hydrogen evolution.
More
Translated text
Key words
dinuclear ruthenium metal complexes,dynamic ligand exchange,metal complexes,catalysis,phenyl-spaced
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined