Laser–ultrasonic absorption measurements in low carbon steels

Journal of Alloys and Compounds(2000)

Cited 10|Views2
No score
Abstract
We have refined the contactless laser–ultrasound reverberation technique to measure ultrasonic absorption on small metallic samples. In this technique, a sample is supported by a holder which is ultrasonically decoupled from the sample. A pulsed laser is used to generate an acoustic pulse. After the pulse has mode converted and scattered sufficiently to fully insonify the sample, the decrease in the noise-like ultrasonic signal is recorded as a function of time using a laser-interferometer. A joint time–frequency analysis technique is used to extract an absorption spectrum from the signal. In this paper, the technique is demonstrated in a frequency bandwidth ranging from 1 to 7 MHz, and in a dynamic range of 0.003 to 0.3 dBμs−1. Measurements made on samples of three low-carbon steel grades, namely ultra low carbon (ULC), low carbon (LC), and high strength, low-alloy steels (HSLA), clearly show that ultrasonic absorption varies with steel grade. The technique was utilized to study the effect of a magnetic field on the ultrasonic absorption of an annealed ultra low carbon steel sample. It was found that magnetoelastic effects are responsible for a large fraction of the total absorption.
More
Translated text
Key words
Laser–ultrasound,Ultrasonic absorption,Low carbon steel
AI Read Science
Must-Reading Tree
Example
Generate MRT to find the research sequence of this paper
Chat Paper
Summary is being generated by the instructions you defined