Efficient recovery from false state in distributed routing algorithms

NETWORKING 2010, PROCEEDINGS(2010)

引用 1|浏览0
暂无评分
摘要
Malicious and misconfigured nodes can inject incorrect state into a distributed system, which can then be propagated system-wide as a result of normal network operation. Such false state can degrade the performance of a distributed system or render it unusable. For example, in the case of network routing algorithms, false state corresponding to a node incorrectly declaring a cost of 0 to all destinations (maliciously or due to misconfiguration) can quickly spread through the network. This causes other nodes to (incorrectly) route via the misconfigured node, resulting in suboptimal routing and network congestion. We propose three algorithms for efficient recovery in such scenarios and prove the correctness of each of these algorithms. Through simulation, we evaluate our algorithms – in terms of message and time overhead – when applied to removing false state in distance vector routing. Our analysis shows that over topologies where link costs remain fixed and for the same topologies where link costs change, a recovery algorithm based on system-wide checkpoints and a rollback mechanism yields superior performance when using the poison reverse optimization.
更多
查看译文
关键词
misconfigured node,link costs change,network congestion,efficient recovery,distance vector routing,false state,suboptimal routing,normal network operation,link cost,incorrect state,distributed system,recovery,fault tolerance,security,fault tolerant,network routing,routing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要