基本信息
views: 20

Bio
In my research group, we are interested in how plants adjust their development to environmental signals. Currently we work on two main topics:
1/ Regulation of protein activity by microProteins
Many proteins achieve their function by acting as part of multi-protein complexes. The formation of these complexes is highly regulated and mediated through domains of protein-protein interaction. Disruption of a complex or of the ability of the proteins to form homodimers, heterodimers or multimers can have severe consequences for cellular function. In this context, the formation of dimers and multimers can be perturbed by proteins we refer to as 'microProteins'. These disruptive protein species contain the protein-interaction domains of bona fide interaction partners, but lack the functional domains required for the activation of, for example, transcription or DNA binding. MicroProteins thus behave as post-translational regulators by forming homotypic dimers with their targets, and act through the dominant-negative suppression of protein complex function. We study microProtein function in model in crop plants.
2/ Environmental control of morphogenesis in plants
Plants are sessile organisms and have thus to cope with the environment they are exposed to. In order to optimize reproductive success, plants have evolved refined mechanisms to respond to environmental cues by adjusting developmental processes. Small changes in the red to far-red light ratio, for example, can be detected by the plant phytochrome system and translated into growth responses. My laboratory is interested in understanding how the environment influences the basic patterning machinery and how basic patterning modules are used to steer developmental processes required for adaptive growth responses.
1/ Regulation of protein activity by microProteins
Many proteins achieve their function by acting as part of multi-protein complexes. The formation of these complexes is highly regulated and mediated through domains of protein-protein interaction. Disruption of a complex or of the ability of the proteins to form homodimers, heterodimers or multimers can have severe consequences for cellular function. In this context, the formation of dimers and multimers can be perturbed by proteins we refer to as 'microProteins'. These disruptive protein species contain the protein-interaction domains of bona fide interaction partners, but lack the functional domains required for the activation of, for example, transcription or DNA binding. MicroProteins thus behave as post-translational regulators by forming homotypic dimers with their targets, and act through the dominant-negative suppression of protein complex function. We study microProtein function in model in crop plants.
2/ Environmental control of morphogenesis in plants
Plants are sessile organisms and have thus to cope with the environment they are exposed to. In order to optimize reproductive success, plants have evolved refined mechanisms to respond to environmental cues by adjusting developmental processes. Small changes in the red to far-red light ratio, for example, can be detected by the plant phytochrome system and translated into growth responses. My laboratory is interested in understanding how the environment influences the basic patterning machinery and how basic patterning modules are used to steer developmental processes required for adaptive growth responses.
Research Interests
Papers共 60 篇Author StatisticsCo-AuthorSimilar Experts
By YearBy Citation主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Marco Biancucci, Daniele Chirivì, Alessio Baldini, Eugene Badenhorst, Fabio Dobetti,Bahman Khahani,Elide Formentin,Tenai Eguen,Franziska Turck,John P Moore,Elahe Tavakol,Stephan Wenkel,Fiorella Lo Schiavo,Ignacio Ezquer,Vittoria Brambilla, David Horner,Matteo Chiara,Giorgio Perrella,Camilla Betti,Fabio Fornara
Plant physiologyno. 4 (2025)
Louise Petri, Anne Van Humbeeck, Huanying Niu, Casper Ter Waarbeek,Ashleigh Edwards,Maurizio Junior Chiurazzi, Ylenia Vittozzi,Stephan Wenkel
biorxiv(2024)
Marco Biancucci,Daniele Chirivì, Alessio Baldini, Eugene Badenhorst, Fabio Dobetti,Bahman Khahani,Elide Formentin,Tenai Eguen,Franziska Katharina Turck,John P. Moore,Elahe Tavakol,Stephan Wenkel, Lo,Ignacio Ezquer,Vittoria Brambilla,David Stephen Horner,Matteo Chiara,Giorgio Perrella,Camilla Betti,Fabio Fornara
biorxiv(2024)
openalex(2023)
Load More
Author Statistics
#Papers: 60
#Citation: 3253
H-Index: 23
G-Index: 46
Sociability: 5
Diversity: 3
Activity: 23
Co-Author
Co-Institution
D-Core
- 合作者
- 学生
- 导师
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn