基本信息
浏览量:38

个人简介
Dr. Mukhopadhyay works in both theoretical and applied side of Statistical data science. Over the past years, he has been developing a new and exciting discipline–“Nonparametric Data Science” for progressive unification of fundamental statistical learning tools. Under this new framework, significant number of statistical problems have been tackled to date, including network modeling, large-scale mode identification for discovery science, unified multiple testing, nonparametric copula dependence modeling, non-linear time series modeling, high-dimensional k-sample modeling, generalized empirical Bayes modeling, and nonparametric distributed learning for massive data. All of these results show how our general theory acts as an organizing principle for varieties of data analysis endeavors.
研究兴趣
论文共 65 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
JOURNAL OF QUANTITATIVE ECONOMICSno. 1 (2023): 265-265
Journal of nonparametric statisticsno. 4 (2022): 1036-1062
Recent Advances in PMOS Negative Bias Temperature Instabilitypp.59-80, (2021)
Recent Advances in PMOS Negative Bias Temperature Instabilitypp.37-58, (2021)
semanticscholar(2021)
引用0浏览0引用
0
0
加载更多
作者统计
#Papers: 65
#Citation: 1072
H-Index: 23
G-Index: 30
Sociability: 4
Diversity: 3
Activity: 4
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn