基本信息
浏览量:0

个人简介
My work broadly deals with investigating the effects of changing data distributions in Machine Learning, and their implications on Fairness in ML. I am interested in both the theoretical and practical aspects of such phenomena. One of our works investigated the effects of under-representation and labeling biases on some commonly used fair classifiers, and contained some almost obvious theoretical observations. Another work (in review) looks at investigating the phenomena of recovering Bayes optimal classifiers with biased data using fairness constraints, which is an extension of this work by Blum et al. Currently, we are also working on investigating the effects of noisy or uncertain protected attributes on fair classifiers, which started as an internship project with Prof. Shin’ichi Satoh at the National Institute of Informatics at Tokyo, Japan.
研究兴趣
论文共 17 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Gaurav Aggarwal, Anmol, Subhash Kumar, Vivesh Sood,Dharam Singh, Amit Chawla,Mohit Sharma,Upendra Sharma
Natural product researchpp.1-10, (2025)
ICML 2024 (2024)
2021 International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE)pp.403-405, (2021)
Algorithms for Intelligent Systemspp.259-289, (2020)
加载更多
作者统计
#Papers: 16
#Citation: 232
H-Index: 4
G-Index: 11
Sociability: 4
Diversity: 2
Activity: 5
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn