基本信息
浏览量:50

个人简介
In 1999, Dr. Pask accepted a National Research Council Associateship to continue work on electronic-structure method development and applications with Dr. David Singh at the Naval Research Laboratory in Washington, DC. While there, he studied transition-metal compounds, using the full-potential linearized augmented planewave method and continued work on the finite-element electronic-structure method and associated large-scale positron applications. He received the Nicholas Metropolis Award for Outstanding Doctoral Thesis Work in Computational Physics from the American Physical Society in 2001 for his work on the development of the finite-element electronic-structure method.
Dr. Pask joined the EOS & Materials Theory group at LLNL in 2001. He continues work on ab initio electronic-structure method development and applications and currently serves as Director of a Lawrence Livermore/Lawrence Berkeley/UC Berkeley collaboration to develop and apply new discontinuous Galerkin and pole expansion and selected inversion electronic-structure methods to advance understanding of the chemistry and dynamics of Li-ion batteries. His most recent work has focused on the development and application of a new spectral quadrature electronic-structure method for massively parallel O(N) electronic-structure calculations of metals and insulators for the ExMatEx Exascale Co-Design Center with applications to complex materials at extreme conditions.
Dr. Pask joined the EOS & Materials Theory group at LLNL in 2001. He continues work on ab initio electronic-structure method development and applications and currently serves as Director of a Lawrence Livermore/Lawrence Berkeley/UC Berkeley collaboration to develop and apply new discontinuous Galerkin and pole expansion and selected inversion electronic-structure methods to advance understanding of the chemistry and dynamics of Li-ion batteries. His most recent work has focused on the development and application of a new spectral quadrature electronic-structure method for massively parallel O(N) electronic-structure calculations of metals and insulators for the ExMatEx Exascale Co-Design Center with applications to complex materials at extreme conditions.
研究兴趣
论文共 115 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
The Journal of chemical physicsno. 18 (2025)
arxiv(2025)
引用0浏览0引用
0
0
Journal of chemical theory and computation (2025)
COMPUTER PHYSICS COMMUNICATIONS (2025)
PHYSICS OF PLASMASno. 10 (2024)
SC24 International Conference for High Performance Computing, Networking, Storage and Analysispp.1-15, (2024)
SOFTWARE IMPACTS (2024)
arXiv (Cornell University) (2023)
加载更多
作者统计
#Papers: 115
#Citation: 2823
H-Index: 28
G-Index: 49
Sociability: 6
Diversity: 2
Activity: 10
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn