基本信息
views: 107

Bio
I am a theoretical condensed matter physicist with a broad interest in quantum many-body physics relevant to experiments. At present, I am predominantly interested in applying topological principles to create protected solid-state and cold-atomic systems for quantum information processing. Such topological phenomena might provide the basis for quantum information processing.
Advances in experimental physics have pushed the design of materials and devices towards the regime of quantum many-body physics. At the same time conceptual advances at the boundary of theoretical condensed matter, quantum information and high-energy physics such as topological quantum field theories, entanglement entropy, holography and many-body localization all point to a new era of understanding new quantum mechanical many-body phenomena. I am primarily interested in searching for manifestations of these beautiful ideas in phenomena in the real world. One such phenomenon, which is at the heart of topological quantum field theory, is topological degeneracy of quantum states. Such degeneracy is a macroscopic quantum phenomenon where two many-body quantum states of the system are at exactly the same energy in a way that is immune to external perturbations. Potential candidates for topological superconductors that could support Majorana fermions and are being studied in on-going experiments provide examples of phases with similarly protected degeneracy. This creates the potential of storing and manipulating quantum information in macroscopic states of quantum materials, and ultimately, of leading to platforms for topological quantum computation. I am also interested in the search for quantum many-body phenomena in other systems where topological principles such as Weyl systems and spin-orbit coupled Bose gases as well as Josephson junction arrays.
Advances in experimental physics have pushed the design of materials and devices towards the regime of quantum many-body physics. At the same time conceptual advances at the boundary of theoretical condensed matter, quantum information and high-energy physics such as topological quantum field theories, entanglement entropy, holography and many-body localization all point to a new era of understanding new quantum mechanical many-body phenomena. I am primarily interested in searching for manifestations of these beautiful ideas in phenomena in the real world. One such phenomenon, which is at the heart of topological quantum field theory, is topological degeneracy of quantum states. Such degeneracy is a macroscopic quantum phenomenon where two many-body quantum states of the system are at exactly the same energy in a way that is immune to external perturbations. Potential candidates for topological superconductors that could support Majorana fermions and are being studied in on-going experiments provide examples of phases with similarly protected degeneracy. This creates the potential of storing and manipulating quantum information in macroscopic states of quantum materials, and ultimately, of leading to platforms for topological quantum computation. I am also interested in the search for quantum many-body phenomena in other systems where topological principles such as Weyl systems and spin-orbit coupled Bose gases as well as Josephson junction arrays.
Research Interests
Papers共 237 篇Author StatisticsCo-AuthorSimilar Experts
By YearBy Citation主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
PHYSICAL REVIEW LETTERSno. 26 (2024)
PHYSICAL REVIEW LETTERSno. 5 (2024)
arXiv (Cornell University) (2024)
Physical Review Lettersno. 4 (2024)
arxiv(2024)
Cited0Views0Bibtex
0
0
arxiv(2024)
Cited0Views0Bibtex
0
0
PHYSICAL REVIEW LETTERSno. 20 (2024)
PHYSICAL REVIEW Bno. 13 (2024)
arxiv(2024)
Cited0Views0Bibtex
0
0
arXiv (Cornell University) (2024)
Load More
Author Statistics
#Papers: 237
#Citation: 14683
H-Index: 50
G-Index: 116
Sociability: 5
Diversity: 2
Activity: 39
Co-Author
Co-Institution
D-Core
- 合作者
- 学生
- 导师
Data Disclaimer
The page data are from open Internet sources, cooperative publishers and automatic analysis results through AI technology. We do not make any commitments and guarantees for the validity, accuracy, correctness, reliability, completeness and timeliness of the page data. If you have any questions, please contact us by email: report@aminer.cn