基本信息
浏览量:33

个人简介
At the interface of machine learning and theoretical neuroscience, my research focuses on (i) reverse-engineering in-context learning in transformer models, (ii) making reinforcement learning more sample efficient by introducing model based credit assignment techniques for learning policies grounded in causality and (iii) creating new theories for learning in the brain by bridging optimal control with learning, leading to novel learning algorithms for deep and recurrent neural networks that alleviate important drawbacks of current neural network training methods. My research was awarded several spotlight and oral presentations at the top machine learning conferences, and I have ongoing collaborations with among others João Sacramento (ETH Zurich), Johannes von Oswald (Google Research), Greg Wayne (Google DeepMind), Nathaniel Daw (Princeton), Rafal Bogacz (Oxford) and Angelika Steger (ETH Zurich) on projects involving in-context learning in transformers, model-based credit assignment in reinforcement learning and methods for bayesian learning in the brain.
研究兴趣
论文共 15 篇作者统计合作学者相似作者
按年份排序按引用量排序主题筛选期刊级别筛选合作者筛选合作机构筛选
时间
引用量
主题
期刊级别
合作者
合作机构
Johannes von Oswald,Nino Scherrer,Seijin Kobayashi,Luca Versari,Songlin Yang, Maximilian Schlegel, Kaitlin Maile, Yanick Schimpf, Oliver Sieberling,Alexander Meulemans, Rif A. Saurous,Guillaume Lajoie, Charlotte Frenkel,Razvan Pascanu,Blaise Agüera y Arcas,João Sacramento
arxiv(2025)
引用0浏览0引用
0
0
PLOS COMPUTATIONAL BIOLOGYno. 10 (2024)
EMNLP 2024 (2024): 6817-6834
CoRR (2024)
2023 Conference on Cognitive Computational Neuroscience (2023)
加载更多
作者统计
#Papers: 15
#Citation: 296
H-Index: 7
G-Index: 10
Sociability: 4
Diversity: 1
Activity: 30
合作学者
合作机构
D-Core
- 合作者
- 学生
- 导师
数据免责声明
页面数据均来自互联网公开来源、合作出版商和通过AI技术自动分析结果,我们不对页面数据的有效性、准确性、正确性、可靠性、完整性和及时性做出任何承诺和保证。若有疑问,可以通过电子邮件方式联系我们:report@aminer.cn